Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Journal of Hazardous Materials ; : 131833, 2023.
Article in English | ScienceDirect | ID: covidwho-20235954

ABSTRACT

In recent years, triclosan (TCS) has been widely used as an antibacterial agent in personal care products due to the spread of the Coronavirus. TSC is an emerging contaminant, and due to its stability and toxicity, it cannot be completely degraded through traditional wastewater treatment methods. In this study, a novel strain of Enterobacter cloacae was isolated and identified that can grow in high TCS concentrations. Also, we introduced naphthalene dioxygenase as an effective enzyme in TCS biodegradation, and its role during the removal process was investigated along with the laccase enzyme. The change of cell surface hydrophobicity during TCS removal revealed that a glycolipid biosurfactant called rhamnolipid was involved in TCS removal, leading to enhanced biodegradation of TCS. The independent variables, such as initial TCS concentration, pH, removal duration, and temperature, were optimized using the response surface method (RSM). As a result, the maximum TCS removal (97%) was detected at a pH value of 7 and a temperature of 32 °C after 9 days and 12h of treatment. Gas chromatography-mass spectrometry (GC/MS) analysis showed five intermediate products and a newly proposed pathway for TCS degradation. Finally, the phytotoxicity experiment conducted on Cucumis sativus and Lens culinaris seeds demonstrated an increase in germination power and growth of stems and roots in comparison to untreated water. These results indicate that the final treated water was less toxic.

2.
J Biomol Struct Dyn ; : 1-14, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20239805

ABSTRACT

The human indoleamine-2,3-dioxygenase 2 (hIDO2) protein is growing of interest as it is increasingly implicated in multiple diseases (cancer, autoimmune diseases, COVID-19). However, it is only poorly reported in the literature. Its mode of action remains unknown because it does not seem to catalyze the reaction for which it is attributed: the degradation of the L-Tryptophan into N-formyl-kynurenine. This contrasts with its paralog, the human indoleamine-2,3-dioxygenase 1 (hIDO1), which has been extensively studied in the literature and for which several inhibitors are already in clinical trials. Yet, the recent failure of one of the most advanced hIDO1 inhibitors, the Epacadostat, could be caused by a still unknown interaction between hIDO1 and hIDO2. In order to better understand the mechanism of hIDO2, and in the absence of experimental structural data, a computational study mixing homology modeling, Molecular Dynamics, and molecular docking was conducted. The present article highlights an exacerbated lability of the cofactor as well as an inadequate positioning of the substrate in the active site of hIDO2, which might bring part of an answer to its lack of activity.Communicated by Ramaswamy H. Sarma.

3.
Front Mol Neurosci ; 16: 1194769, 2023.
Article in English | MEDLINE | ID: covidwho-20231971

ABSTRACT

Critical COVID-19 disease is accompanied by depletion of plasma tryptophan (TRY) and increases in indoleamine-dioxygenase (IDO)-stimulated production of neuroactive tryptophan catabolites (TRYCATs), including kynurenine (KYN). The TRYCAT pathway has not been studied extensively in association with the physiosomatic and affective symptoms of Long COVID. In the present study, we measured serum TRY, TRYCATs, insulin resistance (using the Homeostatic Model Assessment Index 2-insulin resistance, HOMA2-IR), C-reactive protein (CRP), physiosomatic, depression, and anxiety symptoms in 90 Long COVID patients, 3-10 months after remission of acute infection. We were able to construct an endophenotypic class of severe Long COVID (22% of the patients) with very low TRY and oxygen saturation (SpO2, during acute infection), increased kynurenine, KYN/TRY ratio, CRP, and very high ratings on all symptom domains. One factor could be extracted from physiosomatic symptoms (including chronic fatigue-fibromyalgia), depression, and anxiety symptoms, indicating that all domains are manifestations of the common physio-affective phenome. Three Long COVID biomarkers (CRP, KYN/TRY, and IR) explained around 40% of the variance in the physio-affective phenome. The latter and the KYN/TRY ratio were significantly predicted by peak body temperature (PBT) and lowered SpO2 during acute infection. One validated latent vector could be extracted from the three symptom domains and a composite based on CRP, KYN/TRY, and IR (Long COVID), and PBT and SpO2 (acute COVID-19). In conclusion, the physio-affective phenome of Long COVID is a manifestation of inflammatory responses during acute and Long COVID, and lowered plasma tryptophan and increased kynurenine may contribute to these effects.

4.
Infektsiya I Immunitet ; 12(5):827-836, 2022.
Article in English | Web of Science | ID: covidwho-2309353

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis ( TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regu lated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-dioxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.

5.
Russian Journal of Infection and Immunity ; 12(5):827-836, 2022.
Article in Russian | EMBASE | ID: covidwho-2267037

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-di-oxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies.Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

6.
Russian Journal of Infection and Immunity ; 12(5):827-836, 2022.
Article in Russian | EMBASE | ID: covidwho-2232059

ABSTRACT

The international biomedical community has been currently facing a need to find a simple and most accessible type of analysis that helps to diagnose tuberculosis (TB) with the maximum reliability even before the onset of clinical manifestations. Tuberculosis results in more deaths than any other pathogen, second only to pneumonia caused by the SARS-CoV-2 virus, but the majority of infected people remain asymptomatic. In addition, it is important to develop methods to distinguish various forms of tuberculosis infection course at early stages and to reliably stratify patients into appropriate groups (persons with a rapidly progressing infection, chronic course, latent infection carriers). Immunometabolism investigates a relationship between bioenergetic pathways and specific functions of immune cells that has recently become increasingly important in scientific research. The host anti-mycobacteria immune response in tuberculosis is regulated by a number of metabolic networks that can interact both cooperatively and antagonistically, influencing an outcome of the disease. The balance between inflammatory and immune reactions limits the spread of mycobacteria in vivo and protects from developing tuberculosis. Cytokines are essential for host defense, but if uncontrolled, some mediators may contribute to developing disease and pathology. Differences in plasma levels of metabolites between individuals with advanced infection, LTBI and healthy individuals can be detected long before the onset of the major related clinical signs. Changes in amino acid and cortisol level may be detected as early as 12 months before the onset of the disease and become more prominent at verifying clinical diagnosis. Assessing serum level of certain amino acids and their ratios may be used as additional diagnostic markers of active pulmonary TB. Metabolites, including serum fatty acids, amino acids and lipids may contribute to detecting active TB. Metabolic profiles indicate about increased indolamine 2.3-di-oxygenase 1 (IDO1) activity, decreased phospholipase activity, increased adenosine metabolite level, and fibrous lesions in active vs. latent infection. TB treatment can be adjusted based on individual patient metabolism and biomarker profiles. Thus, exploring immunometabolism in tuberculosis is necessary for development of new therapeutic strategies. Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

7.
Comput Struct Biotechnol J ; 20: 5256-5263, 2022.
Article in English | MEDLINE | ID: covidwho-2061047

ABSTRACT

Over the past decade, our understanding of human diseases has rapidly grown from the rise of single-cell spatial biology. While conventional tissue imaging has focused on visualizing morphological features, the development of multiplex tissue imaging from fluorescence-based methods to DNA- and mass cytometry-based methods has allowed visualization of over 60 markers on a single tissue section. The advancement of spatial biology with a single-cell resolution has enabled the visualization of cell-cell interactions and the tissue microenvironment, a crucial part to understanding the mechanisms underlying pathogenesis. Alongside the development of extensive marker panels which can distinguish distinct cell phenotypes, multiplex tissue imaging has facilitated the analysis of high dimensional data to identify novel biomarkers and therapeutic targets, while considering the spatial context of the cellular environment. This mini-review provides an overview of the recent advancements in multiplex imaging technologies and examines how these methods have been used in exploring pathogenesis and biomarker discovery in cancer, autoimmune and infectious diseases.

8.
Pathogens ; 11(4)2022 Apr 07.
Article in English | MEDLINE | ID: covidwho-1810060

ABSTRACT

Chikungunya virus (CHIKV) infection causes intense cytokine/chemokine inflammatory responses and debilitating joint pain. Indoleamine2,3-dioxygenase 1 (IDO-1) is an enzyme that initiates the tryptophan degradation that is important in initial host innate immune defense against infectious pathogens. Besides that, IDO-1 activation acts as a regulatory mechanism to prevent overactive host immune responses. In this study, we evaluated IDO-1 activity and cytokine/chemokine patterns in CHIKV patients. Higher IDO-1 (Kyn/Trp ratio) activation was observed during the early acute phase of CHIKV infection and declined in the chronic phase. Importantly, increased concentrations of Tumor Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6), Interferon γ (IFN-γ), C-C motif chemokine ligand 2/Monocyte Chemoattractant Protein-1 (CCL2/MCP-1) and C-X-C motif chemokine ligand 10/Interferon Protein-10 (CXCL10/IP-10) were found in the acute phase of infection, while C-C motif chemokine ligand 4/Macrophage Inflammatory Protein 1 ß (CCL4/MIP-1ß) was found at increased concentrations in the chronic phase. Likewise, CHIKV patients with arthritis had significantly higher concentrations of CCL4/MIP-1ß compared to patients without arthritis. Taken together, these data demonstrated increased IDO-1 activity, possibly exerting both antiviral effects and regulating exacerbated inflammatory responses. CCL4/MIP-1ß may have an important role in the persistent inflammation and arthritic symptoms following chikungunya infection.

9.
Respiration ; 100(6): 488-498, 2021.
Article in English | MEDLINE | ID: covidwho-1136133

ABSTRACT

BACKGROUND: The pathogenetic steps leading to Covid-19 interstitial pneumonia remain to be clarified. Most postmortem studies to date reveal diffuse alveolar damage as the most relevant histologic pattern. Antemortem lung biopsy may however provide more precise data regarding the earlier stages of the disease, providing a basis for novel treatment approaches. OBJECTIVES: To ascertain the morphological and immunohistochemical features of lung samples obtained in patients with moderate Covid-19 pneumonia. METHODS: Transbronchial lung cryobiopsy was carried out in 12 Covid-19 patients within 20 days of symptom onset. RESULTS: Histopathologic changes included spots of patchy acute lung injury with alveolar type II cell hyperplasia, with no evidence of hyaline membranes. Strong nuclear expression of phosphorylated STAT3 was observed in >50% of AECII. Interalveolar capillaries showed enlarged lumen and were in part arranged in superposed rows. Pulmonary venules were characterized by luminal enlargement, thickened walls, and perivascular CD4+ T-cell infiltration. A strong nuclear expression of phosphorylated STAT3, associated with PD-L1 and IDO expression, was observed in endothelial cells of venules and interstitial capillaries. Alveolar spaces macrophages exhibited a peculiar phenotype (CD68, CD11c, CD14, CD205, CD206, CD123/IL3AR, and PD-L1). CONCLUSIONS: Morphologically distinct features were identified in early stages of Covid-19 pneumonia, with epithelial and endothelial cell abnormalities different from either classical interstitial lung diseases or diffuse alveolar damage. Alveolar type II cell hyperplasia was a prominent event in the majority of cases. Inflammatory cells expressed peculiar phenotypes. No evidence of hyaline membranes and endothelial changes characterized by IDO expression might in part explain the compliance and the characteristic pulmonary vasoplegia observed in less-advanced Covid-19 pneumonia.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Autopsy , Endothelial Cells , Humans , Lung , SARS-CoV-2 , Tomography, X-Ray Computed
10.
Biosci Rep ; 40(10)2020 10 30.
Article in English | MEDLINE | ID: covidwho-989979

ABSTRACT

COVID-19 induces a proinflammatory environment that is stronger in patients requiring intensive care. The cytokine components of this environment may determine efficacy or otherwise of glucocorticoid therapy. The immunity modulators, the aryl hydrocarbon receptor (AhR) and the nuclear NAD+-consuming enzyme poly (ADP-ribose) polymerase 1 (PARP 1) may play a critical role in COVID-19 pathophysiology. The AhR is overexpressed in coronaviruses, including COVID-19 and, as it regulates PARP gene expression, the latter is likely to be activated in COVID-19. PARP 1 activation leads to cell death mainly by depletion of NAD+ and adenosine triphosphate (ATP), especially when availability of these energy mediators is compromised. PARP expression is enhanced in other lung conditions: the pneumovirus respiratory syncytial virus (RSV) and chronic obstructive pulmonary disease (COPD). I propose that PARP 1 activation is the terminal point in a sequence of events culminating in patient mortality and should be the focus of COVID-19 immunotherapy. Potent PARP 1 inhibitors are undergoing trials in cancer, but a readily available inhibitor, nicotinamide (NAM), which possesses a highly desirable biochemical and activity profile, merits exploration. It conserves NAD+ and prevents ATP depletion by PARP 1 and Sirtuin 1 (silent mating type information regulation 2 homologue 1) inhibition, enhances NAD+ synthesis, and hence that of NADP+ which is a stronger PARP inhibitor, reverses lung injury caused by ischaemia/reperfusion, inhibits proinflammatory cytokines and is effective against HIV infection. These properties qualify NAM for therapeutic use initially in conjunction with standard clinical care or combined with other agents, and subsequently as an adjunct to stronger PARP 1 inhibitors or other drugs.


Subject(s)
Coronavirus Infections/drug therapy , Niacinamide/pharmacology , Pneumonia, Viral/drug therapy , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Betacoronavirus/drug effects , COVID-19 , Cell Line , Coronavirus Infections/pathology , Cytokines/blood , Humans , Immunotherapy/methods , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/metabolism , Pandemics , Pneumonia, Viral/pathology , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , SARS-CoV-2
11.
Eur J Med Chem ; 211: 113071, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-987584

ABSTRACT

Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.


Subject(s)
COVID-19 Drug Treatment , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Biological Products , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Structure-Activity Relationship
12.
Immunol Lett ; 217: 25-30, 2020 01.
Article in English | MEDLINE | ID: covidwho-888577

ABSTRACT

In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection.


Subject(s)
Autoimmune Diseases/enzymology , Autoimmunity/drug effects , Coronavirus Infections/enzymology , Coronavirus Infections/immunology , Liver/enzymology , Murine hepatitis virus/immunology , Tryptophan Oxygenase/antagonists & inhibitors , Tryptophan Oxygenase/metabolism , Alarmins/metabolism , Animals , Autoantibodies/drug effects , Autoantibodies/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Female , HMGB1 Protein/blood , HMGB1 Protein/metabolism , Hydrolases/immunology , Indoles/therapeutic use , Liver/drug effects , Liver/immunology , Liver/pathology , Mice , Mice, Inbred BALB C , Murine hepatitis virus/drug effects , Murine hepatitis virus/growth & development , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Uric Acid/blood , Uric Acid/metabolism , Virus Replication/drug effects , Virus Replication/immunology
13.
Environ Toxicol Pharmacol ; 81: 103520, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-885274

ABSTRACT

Many diverse strategies allow and facilitate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to evade antiviral innate immune mechanisms. Although the type I interferon (IFN) system has a critical role in restricting the dissemination of viral infection, suppression of IFN receptor signals by SARS-CoV-2 constitutes a checkpoint that plays an important role in the immune escape of the virus. Environmental pollution not only facilitates SARS-CoV-2 infection but also increases infection-associated fatality risk, which arises due to Systemic Aryl hydrocarbon Receptor (AhR) Activation Syndrome. The intracellular accumulation of endogenous kynurenic acid due to overexpression of the indoleamine 2,3-dioxygenase (IDO) by AhR activation induces AhR-interleukin-6 (IL-6)-signal transducers and activators of the transcription 3 (STAT3) signaling pathway. The AhR-IDO1-Kynurenine pathway is an important checkpoint, which leads to fatal consequences in SARS-CoV-2 infection and immune evasion in the context of Treg/Th17 imbalance and cytokine storm.


Subject(s)
COVID-19/immunology , Environmental Pollution/adverse effects , Immune Evasion/immunology , Immunity, Innate/immunology , Inflammation Mediators/immunology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/metabolism , Humans , Immune Evasion/drug effects , Immunity, Innate/drug effects , Inflammation Mediators/metabolism , Receptors, Aryl Hydrocarbon/immunology , Receptors, Aryl Hydrocarbon/metabolism , COVID-19 Drug Treatment
14.
Restor Neurol Neurosci ; 38(4): 343-354, 2020.
Article in English | MEDLINE | ID: covidwho-621099

ABSTRACT

Covid-19 is the acute illness caused by SARS-CoV-2 with initial clinical symptoms such as cough, fever, malaise, headache, and anosmia. After entry into cells, corona viruses (CoV) activate aryl hydrocarbon receptors (AhRs) by an indoleamine 2,3-dioxygenase (IDO1)-independent mechanism, bypassing the IDO1-kynurenine-AhR pathway. The IDO1-kynurenine-AhR signaling pathway is used by multiple viral, microbial and parasitic pathogens to activate AhRs and to establish infections. AhRs enhance their own activity through an IDO1-AhR-IDO1 positive feedback loop prolonging activation induced by pathogens. Direct activation of AhRs by CoV induces immediate and simultaneous up-regulation of diverse AhR-dependent downstream effectors, and this, in turn, results in a "Systemic AhR Activation Syndrome" (SAAS) consisting of inflammation, thromboembolism, and fibrosis, culminating in multiple organ injuries, and death. Activation of AhRs by CoV may lead to diverse sets of phenotypic disease pictures depending on time after infection, overall state of health, hormonal balance, age, gender, comorbidities, but also diet and environmental factors modulating AhRs. We hypothesize that elimination of factors known to up-regulate AhRs, or implementation of measures known to down-regulate AhRs, should decrease severity of infection. Although therapies selectively down-regulating both AhR and IDO1 are currently lacking, medications in clinical use such as dexamethasone may down-regulate both AhR and IDO1 genes, as calcitriol/vitamin D3 may down-regulate the AhR gene, and tocopherol/vitamin E may down-regulate the IDO1 gene. Supplementation of calcitriol should therefore be subjected to epidemiological studies and tested in prospective trials for prevention of CoV infections, as should tocopherol, whereas dexamethasone could be tried in interventional trials. Because lack of physical exercise activates AhRs via the IDO1-kynurenine-AhR signaling pathway increasing risk of infection, physical exercise should be encouraged during quarantines and stay-at-home orders during pandemic outbreaks. Understanding which factors affect gene expression of both AhR and IDO1 may help in designing therapies to prevent and treat humans suffering from Covid-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/physiopathology , Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Pandemics , Pneumonia, Viral/physiopathology , Receptors, Aryl Hydrocarbon/physiology , Air Pollutants/adverse effects , COVID-19 , Calcitriol/therapeutic use , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Dexamethasone/therapeutic use , Exercise , Feedback, Physiological , Female , Fibrosis/etiology , Gene Expression Regulation/drug effects , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Inflammation/etiology , Kynurenine/physiology , Male , Molecular Targeted Therapy , Multiple Organ Failure/etiology , Obstetric Labor, Premature/etiology , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Pregnancy , Pregnancy Complications, Infectious/physiopathology , Receptors, Aryl Hydrocarbon/biosynthesis , Receptors, Aryl Hydrocarbon/genetics , SARS-CoV-2 , Sensation Disorders/etiology , Signal Transduction/drug effects , Signal Transduction/physiology , Thromboembolism/etiology , Tocopherols/therapeutic use , COVID-19 Drug Treatment
15.
Diagnostics (Basel) ; 10(4)2020 Apr 16.
Article in English | MEDLINE | ID: covidwho-101702

ABSTRACT

BACKGROUND: Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency screening test is essential for malaria treatment, control, and elimination programs. G6PD deficient individuals are at high risk of severe hemolysis when given anti-malarial drugs such as primaquine, quinine, other sulphonamide-containing medicines, and chloroquine, which has recently been shown to be potent for the treatment of coronavirus disease (COVID-19). We evaluated the geographical accessibility to POC testing for G6PD deficiency in Ghana, a malaria-endemic country. METHODS: We obtained the geographic information of 100 randomly sampled clinics previously included in a cross-sectional survey. We also obtained the geolocated data of all public hospitals providing G6PD deficiency testing services in the region. Using ArcGIS 10.5, we quantified geographical access to G6PD deficiency screening test and identified clinics as well as visualize locations with poor access for targeted improvement. The travel time was estimated using an assumed speed of 20 km per hour. FINDINGS: Of the 100 clinics, 58% were Community-based Health Planning and Services facilities, and 42% were sub-district health centers. The majority (92%) were Ghana Health Service facilities, and the remaining 8% were Christian Health Association of Ghana facilities. Access to G6PD deficiency screening test was varied across the districts, and G6PD deficiency screening test was available in all eight public hospitals. This implies that the health facility-to-population ratio for G6PD deficiency testing service was approximately 1:159,210 (8/1,273,677) population. The spatial analysis quantified the current mean distance to a G6PD deficiency testing service from all locations in the region to be 34 ± 14 km, and travel time (68 ± 27 min). The estimated mean distance from a clinic to a district hospital for G6PD deficiency testing services was 15 ± 11 km, and travel time (46 ± 33 min). CONCLUSION: Access to POC testing for G6PD deficiency in Ghana was poor. Given the challenges associated with G6PD deficiency, it would be essential to improve access to G6PD deficiency POC testing to facilitate administration of sulphadoxine-pyrimethamine to pregnant women, full implementation of the malaria control program in Ghana, and treatment of COVID-19 patients with chloroquine in malaria-endemic countries. To enable the World Health Organization include appropriate G6PD POC diagnostic tests in its list of essential in-vitro diagnostics for use in resource-limited settings, we recommend a wider evaluation of available POC diagnostic tests for G6PD deficiency, particularly in malaria-endemic countries.

SELECTION OF CITATIONS
SEARCH DETAIL